Simplifying Fractions

To enlarge a fraction, we multiply the numerator and the denominator of this fraction by the same natural number (except 0). This gives us a fraction of equal size. The "reverse" process is also possible.

If the numerator and the denominator of a fraction have a common factor, we can divide both by that factor. This gives us a fraction of equal size.

Let's consider the fraction $\frac{8}{10}$. As we can see, there is a fraction that is equal in size to $\frac{8}{10}$, but with a smaller numerator and denominator, namely $\frac{4}{5}$.

If we divide the denominator 10 by 2, we get 5. $\frac{1}{5}$ is twice as large as $\frac{1}{10}$.

To obtain an equal-sized fraction, we therefore only need half as many parts. So we also divide the numerator 8 by 2 and get 4. We have:

$$\frac{8}{10} = \frac{8 \div 2}{10 \div 2} = \frac{4}{5} \ .$$

We can express this connection somewhat imprecisely, but very briefly, as follows:

The bigger the parts, the fewer in number.

The process of dividing the numerator and the denominator of a fraction by a common factor of numerator and denominator is called **simplifying**. Simplifying a fraction results in a fraction of equal size.

If the numerator and the denominator of a fraction are divided by a common factor, a fraction of equal size results. This process is called **simplifying**.

We can also express this connection very briefly:

$$\frac{a}{b} = \frac{a \div n}{b \div n}$$

Here, $\frac{\mathbf{a}}{\mathbf{b}}$ stands for any fraction and \mathbf{n} stands for any common factor of \mathbf{a} and \mathbf{b} . To avoid nonsense, we will from now on divide only by such common factors \mathbf{n} that are greater than $\mathbf{1}$.

1

Example 1

We want to simplify the fraction $\frac{14}{21}$ by 7.

If we divide the denominator 21 by 7, we get 3. $\frac{1}{3}$ is seven times as large as $\frac{1}{21}$. To get a fraction of equal size, we therefore only need one seventh as many parts. If we divide the numerator 14 by 7, we get 2.

$$\frac{14}{21} = \frac{14 \div 7}{21 \div 7} = \frac{2}{3}$$

Example 2

We want to simplify the fraction $\frac{12}{18}$ by 3.

If we divide the denominator 18 by 3, we get 6. $\frac{1}{6}$ is three times as large as $\frac{1}{18}$. To get a fraction of equal size, we therefore only need one third as many parts. If we divide the numerator 12 by 3, we get 4.

$$\frac{12}{18} = \frac{12 \div 3}{18 \div 3} = \frac{4}{6} .$$

Simplifying by all divisors of the denominator

For every divisor of a denominator, there are fractions that we can simplify by this divisor. Let's look at an example: Here we have 12 twelfths.

Since 12 is divisible by 6, we can group 6 twelfths into *one* part each. On this fraction strip, there are $12 \div 6 = 2$ such parts. So these are halves.

If a fraction has the denominator 12 and a numerator that is divisible by 6, we can simplify the fraction by 6. For example:

$$\frac{6}{12} = \frac{6 \div 6}{12 \div 6} = \frac{1}{2}$$
 and $\frac{18}{12} = \frac{18 \div 6}{12 \div 6} = \frac{3}{2}$.

12 is also divisible by 4. Therefore, we can divide the 12 twelfths into groups of four. On one whole, we then have 3 equal parts. Each of these parts is thus equal to $\frac{1}{3}$. So: $\frac{4}{12} = \frac{1}{3}$.

3

If a fraction has the denominator 12 and a numerator that is divisible by 4, we can simplify the fraction by 4. For example:

$$\frac{8}{12} = \frac{8 \div 4}{12 \div 4} = \frac{2}{3}$$
 and $\frac{16}{12} = \frac{16 \div 4}{12 \div 4} = \frac{4}{3}$.

12 is also divisible by 3. Therefore, we can combine 3 twelfths into *one* part and obtain fourths.

If a fraction has the denominator 12 and a numerator that is divisible by 3, we can simplify the fraction by 3. For example:

$$\frac{6}{12} = \frac{6 \div 3}{12 \div 3} = \frac{2}{4}$$
 and $\frac{9}{12} = \frac{9 \div 3}{12 \div 3} = \frac{3}{4}$.

12 is also divisible by 2. Therefore, we can combine 2 twelfths into *one* part and obtain sixths.

If a fraction has the denominator 12 and a numerator that is divisible by 2, we can simplify the fraction by 2. For example:

$$\frac{6}{12} = \frac{6 \div 2}{12 \div 2} = \frac{3}{6}$$
 and $\frac{28}{12} = \frac{28 \div 2}{12 \div 2} = \frac{14}{6}$.

Simplifying as the inverse of expanding

We can also think of simplifying as the inverse of expanding. Expanding means, for example: We divide each third of $\frac{2}{3}$ into 5 equal parts. Each of these parts then has one fifth the size of a third. Therefore, we need 5 times as many parts for a fraction of equal size.

So:
$$\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15}$$
.

Now we can go the other way and group every 5 of the 10 fifteenths into larger parts. These parts are then 5 times as large as the previous ones, and therefore we only need $10 \div 5 = 2$ parts for a fraction of equal size.

So:
$$\frac{10}{15} = \frac{10 \div 5}{15 \div 5} = \frac{2}{3}$$
.

Simplifying a Fraction

Calculating with simplified fractions is usually easier than calculating with unsimplified fractions. We usually simplify a fraction using the greatest common divisor of the numerator and the denominator.

If we are given a fraction, we can proceed as follows:

- 1. Write down all divisors of the numerator.
- 2. Write down all divisors of the denominator.
- 3. Mark the greatest common divisor **GCD** of numerator and denominator.
- 4. Divide numerator and denominator by the greatest common divisor GCD.

From now on, whenever we talk about simplifying a fraction, we always mean simplifying a fraction using the **GCD**.

We can also represent this procedure as a flowchart.

Let's look at some examples:

Example 1

The fraction $\frac{8}{12}$ has numerator 8 and denominator 12.

The divisors of 8 are: 1;2;4;8.

The divisors of 12 are: 1;2;3;4;6;12.

We have marked the GCD in red.

Now we divide the numerator and denominator by the GCD.

$$\frac{8}{12} = \frac{8 \div 4}{12 \div 4} = \frac{2}{3}$$

So if we simplify $\frac{8}{12}$, we get $\frac{2}{3}$.

Example 2

The fraction $\frac{15}{18}$ has numerator 15 and denominator 18.

The divisors of 15 are: 1;3;5;15.

The divisors of 18 are: 1;2;3;6;9;18.

We have marked the **GCD** in red.

Now we divide the numerator and denominator by the GCD.

$$\frac{15}{18} = \frac{15 \div 3}{18 \div 3} = \frac{5}{6}$$

So if we simplify $\frac{15}{18}$, we get $\frac{5}{6}$.

$\begin{array}{c cccc} 1 & 1 & 1 \\ \hline 18 & 18 & 18 \end{array}$	1 1 1 1 1 1 18 18	1 1 1 1 1 18 18	1 1 1 1 1 18 18	1 1 1 1 1 1 18 18	$\begin{array}{c c} 1 \\ 18 \end{array} \begin{array}{c c} 1 \\ 18 \end{array} \begin{array}{c c} 1 \\ 18 \end{array}$
<u>1</u> 6	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>

Example 3

The fraction $\frac{108}{756}$ has numerator 108 and denominator 756.

The divisors of 108 are: 1;2;3;4;6;9;12;18;27;36;54;108.

The divisors of 756 are: 1;2;3;4;6;7;9;12;14;18;21;27;28;36;42;54;63;84;

108; 126; 189; 252; 378; 756.

We have marked the **GCD** in red.

Now we divide numerator and denominator by the GCD.

$$\frac{108}{756} = \frac{108 : 108}{756 : 108} = \frac{1}{7}$$

So, if we reduce the fraction $\frac{108}{756}$, we get $\frac{1}{7}$.

Example 4

The fraction $\frac{40}{81}$ has numerator 40 and denominator 81.

The divisors of 40 are: 1;2;4;5;10;20;40.

The divisors of 81 are: 1;3;9;27;81.

We have marked the **GCD** in red.

Since the greatest common divisor of numerator and denominator is 1, this fraction cannot be reduced in a meaningful way.