#### **Dividing Fractions**

We can think of dividing fractions using a standard procedure. Here are some exercises for practice. Students should write down the calculation, fill in the blanks, and complete the fraction strip diagram.





### Exercise 1 – Level 2

| 1             |   | 1             |   |
|---------------|---|---------------|---|
| $\frac{1}{2}$ | ÷ | $\frac{-}{2}$ | = |





|  | of _ | fits into |  |
|--|------|-----------|--|
|--|------|-----------|--|

|          | 4 |      |  |
|----------|---|------|--|
| Exercise | _ | leve |  |

| 1 |   | 1 |   |
|---|---|---|---|
|   | ÷ |   | _ |
| 2 | • | 2 |   |





of fits into.

### Exercise 2 – Solution

 $\frac{1}{2} \div \frac{1}{3} = \frac{1}{2} \times \frac{3}{1} = \frac{1 \times 3}{2 \times 1} = \frac{3}{2}$ 





# Exercise 2 – Level 2

$$\frac{1}{2} \div \frac{1}{3} =$$





| of | fits into |  |
|----|-----------|--|
|----|-----------|--|

## Exercise 2 – Level 3

 $\frac{1}{2} \div \frac{1}{3} =$ 

| · · · · · · · · · · · · · · · · · · · |  |
|---------------------------------------|--|
|                                       |  |
|                                       |  |
|                                       |  |



















| Exercise 4 – Level 2             |
|----------------------------------|
| $\frac{1}{2} \div \frac{1}{4} =$ |
|                                  |
|                                  |
|                                  |
|                                  |
| 1 of                             |
|                                  |
| of fits into.                    |

| Exercise 4 – Level 3             | )    |          |   |
|----------------------------------|------|----------|---|
| $\frac{1}{2} \div \frac{1}{4} =$ |      |          |   |
|                                  |      |          |   |
|                                  |      |          | 1 |
|                                  |      |          |   |
|                                  |      |          | ] |
| 1                                | of   |          |   |
|                                  |      |          |   |
|                                  | of f | its into |   |











## Exercise 5 – Level 3

 $\frac{1}{2} \div \frac{2}{4} =$ 



|     | of $\square$ | fits into | <u> </u> |
|-----|--------------|-----------|----------|
| ( ) | ( )          |           | ( ).     |











## Exercise 6 – Level 3

 $\frac{1}{2} \div \frac{3}{4} =$ 





| of | fits into |  |
|----|-----------|--|
|----|-----------|--|

## Exercise 7 – Solution

$$\frac{1}{2} \div \frac{1}{5} = \frac{1}{2} \times \frac{5}{1} = \frac{1 \times 5}{2 \times 1} = \frac{5}{2}$$







| Exercise 7 – Level 3             |
|----------------------------------|
| $\frac{1}{2} \div \frac{1}{5} =$ |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
| of fits into.                    |

### Exercise 8 – Solution

 $\frac{1}{2} \div \frac{3}{5} = \frac{1}{2} \times \frac{5}{3} = \frac{1 \times 5}{2 \times 3} = \frac{5}{6}$ 





# Exercise 8 – Level 2

| 1             |   | 3             |   |
|---------------|---|---------------|---|
| $\frac{1}{2}$ | ÷ | $\frac{-}{5}$ | = |





| of | fits into |  |
|----|-----------|--|
|----|-----------|--|

## Exercise 8 – Level 3

 $\frac{1}{2} \div \frac{3}{5} =$ 

|  | - |  |
|--|---|--|
|  |   |  |
|  |   |  |

| 1 of |  |
|------|--|

| of _ | fits into |  |
|------|-----------|--|
|------|-----------|--|

#### Exercise 9 – Solution









### Exercise 9 – Level 3

| 1             |   | 5        |   |
|---------------|---|----------|---|
| $\frac{1}{2}$ | ÷ | <u>6</u> | = |







# Exercise 10 – Solution

 $\frac{1}{3} \div \frac{1}{4} = \frac{1}{3} \times \frac{4}{1} = \frac{1 \times 4}{3 \times 1} = \frac{4}{3}$ 

| <u>1</u> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                           | <u>1</u><br>3 | <u>1</u> 3    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|---------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |               |               |  |
| <u>1</u><br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>1</del> / <sub>4</sub> | <u>1</u>      | $\frac{1}{4}$ |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |               |               |  |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} 1 \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$ |                             |               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |               |               |  |
| $ \begin{array}{c} 4 \\ \hline 3 \end{array}   of \begin{array}{c} 1 \\ \hline 4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fits into                   | <u>1</u> .    |               |  |





# Exercise 10 – Level 3

 $\frac{1}{3} \div \frac{1}{4} =$ 



| <b>A</b> | 1 |  |  |  |
|----------|---|--|--|--|

| of | fits into |  |
|----|-----------|--|
|----|-----------|--|

# Exercise 11 – Solution

 $\frac{1}{3} \div \frac{2}{4} = \frac{1}{3} \times \frac{4}{2} = \frac{1 \times 4}{3 \times 2} = \frac{4}{6} = \frac{2}{3}$ 

| $\frac{1}{3}$                                                                                                        | -             | <u>1</u><br>3 | <u>1</u> 3    |  |
|----------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|--|
|                                                                                                                      |               |               |               |  |
| 1/4                                                                                                                  | <u>1</u><br>4 | $\frac{1}{4}$ | <u>1</u><br>4 |  |
|                                                                                                                      |               |               |               |  |
|                                                                                                                      |               |               |               |  |
| $\begin{array}{c} \begin{array}{c} 1 \\ \hline 6 \end{array} \text{ of } \begin{array}{c} 2 \\ \hline 4 \end{array}$ |               |               |               |  |
|                                                                                                                      |               |               |               |  |
|                                                                                                                      |               |               |               |  |
| $\frac{\boxed{4}}{\boxed{6}}$ of $\frac{\boxed{2}}{\boxed{4}}$                                                       | fits into     | <u>1</u> .    |               |  |





# Exercise 11 – Level 3

 $\frac{1}{2} \div \frac{2}{4} =$ 





# Exercise 12 – Solution

 $\frac{1}{3} \div \frac{3}{4} = \frac{1}{3} \times \frac{4}{3} = \frac{1 \times 4}{3 \times 3} = \frac{4}{9}$ 

|          | <u>1</u><br>3    |                      | -         | <u>1</u><br>3 | <u>1</u> 3    |  |
|----------|------------------|----------------------|-----------|---------------|---------------|--|
|          | -                |                      |           | _             |               |  |
|          | <u>1</u><br>4    |                      | 1/4       | $\frac{1}{4}$ | $\frac{1}{4}$ |  |
|          |                  |                      |           |               |               |  |
|          |                  |                      |           |               |               |  |
| <u>t</u> | $\frac{1}{9}$ of | <u>3</u><br><u>4</u> |           |               |               |  |
|          |                  |                      |           |               |               |  |
|          |                  |                      |           |               |               |  |
|          | $\frac{4}{9}$ of | 3                    | fits into | 1 3           |               |  |





of fits into.

# Exercise 12 – Level 3

 $\frac{1}{3} \div \frac{3}{4} =$ 



| <b>†</b> | 1 |  |  |  |
|----------|---|--|--|--|

#### Exercise 13 – Solution









| Exercise 13 – Level 3            |
|----------------------------------|
| $\frac{2}{3} \div \frac{2}{4} =$ |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
| of fits into.                    |

#### Exercise 14 – Solution

$$\frac{2}{3} \div \frac{2}{5} = \frac{2}{3} \times \frac{5}{2} = \frac{2 \times 5}{3 \times 2} = \frac{10}{6} = \frac{5}{3}$$







# Exercise 14 – Level 3

 $\frac{2}{3} \div \frac{2}{5} =$ 





| of f | its into |
|------|----------|
|------|----------|

#### Exercise 15 – Solution

$$\frac{1}{3} \div \frac{5}{7} = \frac{1}{3} \times \frac{7}{5} = \frac{1 \times 7}{3 \times 5} = \frac{7}{15}$$





# Exercise 15 – Level 2 $\frac{1}{3} \div \frac{5}{7} =$





#### Exercise 15 – Level 3

 $\frac{1}{3} \div \frac{5}{7} =$ 









#### Exercise 16 – Solution

$$\frac{1}{3} \div \frac{6}{7} = \frac{1}{3} \times \frac{7}{6} = \frac{1 \times 7}{3 \times 6} = \frac{7}{18}$$







# Exercise 16 – Level 3

 $\frac{1}{3} \div \frac{6}{7} =$ 





| - 1 |  |  | _ |
|-----|--|--|---|
|     |  |  |   |

| of fits into |  |
|--------------|--|
|--------------|--|

#### Exercise 17 – Solution

$$\frac{2}{3} \div \frac{5}{7} = \frac{2}{3} \times \frac{7}{5} = \frac{2 \times 7}{3 \times 5} = \frac{14}{15}$$





# Exercise 17 – Level 2 $\frac{2}{3} \div \frac{5}{7} =$ $\frac{1}{3} \cdot \frac{5}{7} = \frac{1}{3} = \frac{1}{3} \cdot \frac{5}{7} = \frac{1}{3} \cdot$

# Exercise 17 – Level 3

 $\frac{2}{3} \div \frac{5}{7} =$ 









#### Exercise 18 – Solution

$$\frac{2}{3} \div \frac{6}{7} = \frac{2}{3} \times \frac{7}{6} = \frac{2 \times 7}{3 \times 6} = \frac{14}{18} = \frac{7}{9}$$















# Exercise 19 – Level 3

 $\frac{3}{4} \div \frac{2}{3} =$ 



| 1 of |  |  |
|------|--|--|

|  | of | fits into |  |
|--|----|-----------|--|
|--|----|-----------|--|

### Exercise 20 – Solution









# Exercise 20 – Level 3

 $\frac{3}{4} \div \frac{6}{7} =$ 







| of | fits into | )<br>i |
|----|-----------|--------|
|----|-----------|--------|







# Exercise 21 – Level 3

 $\frac{3}{5} \div \frac{1}{2} =$ 





| of $\square$ | fits into |  |
|--------------|-----------|--|
|              |           |  |

### Exercise 22 – Solution







| Exercise 22 – Level 2      |                  |
|----------------------------|------------------|
| $\frac{4}{5}:\frac{2}{3}=$ |                  |
|                            |                  |
|                            |                  |
|                            |                  |
|                            |                  |
| 1 von                      |                  |
|                            |                  |
|                            | von passen auf . |

| Exercise 22 – Level 3      |
|----------------------------|
| $\frac{4}{5}:\frac{2}{3}=$ |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
| von passen auf.            |

### Exercise 23 – Solution

| 1             | •            | -              | _       | $1 \times 4$         | _                 | _              |
|---------------|--------------|----------------|---------|----------------------|-------------------|----------------|
| $\frac{-}{6}$ | $\div {4} =$ | $=\frac{1}{6}$ | $<{3}=$ | $\frac{1}{6\times3}$ | $=\frac{18}{18}=$ | $\overline{9}$ |

| <u>1</u> 6 | <u>1</u>                          | <u>1</u> 6           | <u>1</u> 6 | <u>1</u> 6 | <u>1</u> 6 |
|------------|-----------------------------------|----------------------|------------|------------|------------|
| 1          |                                   | 1                    | 1          |            | 1          |
| <u>1</u> 4 |                                   | 1/4                  | <u>1</u>   |            | 4          |
|            |                                   |                      |            |            |            |
| <b>†</b>   | 1                                 | <u>.</u> 3           |            |            |            |
|            | 18 °                              | 4                    |            |            |            |
|            |                                   |                      |            |            |            |
|            |                                   |                      |            |            |            |
| <b>V</b>   | 3                                 | 1                    | )          |            |            |
| $=$ $\sim$ | fit                               |                      | ) ·        |            |            |
| 4 of 18    | $\frac{\boxed{3}}{\boxed{4}}$ fit | s into $\frac{1}{6}$ | <u>)</u> . |            |            |





# Exercise 23 – Level 3

 $\frac{1}{6} \div \frac{3}{4} =$ 







| ₩ of | =   | fits into | =       |
|------|-----|-----------|---------|
| ( )  | ( ) |           | $\cdot$ |

### Exercise 24 – Solution









### Exercise 24 – Level 3

| 2        |   | 3       |   |
|----------|---|---------|---|
| <u>6</u> | ÷ | <u></u> | = |







| of | fits into |  |
|----|-----------|--|
|----|-----------|--|

### Exercise 25 – Solution









### Exercise 25 – Level 3

| 3        |   | 3       |   |
|----------|---|---------|---|
| <u>6</u> | ÷ | <u></u> | = |







| of fits | s into |
|---------|--------|
|---------|--------|

# $\frac{4}{6} \div \frac{3}{4} = \frac{4}{6} \times \frac{4}{3} = \frac{4 \times 4}{6 \times 3} = \frac{16}{18} = \frac{8}{9}$

Exercise 26 – Solution





# Exercise 26 - Level 2 $\frac{4}{6} \div \frac{3}{4} =$

# Exercise 26 – Level 3

 $\frac{4}{6} \div \frac{3}{4} =$ 







| $\cong$ of $\cong$ | fits into | $\underline{\underline{\hspace{0.5cm}}}$ |
|--------------------|-----------|------------------------------------------|

### Exercise 27 – Solution







# Exercise 27 - Level 2 $\frac{5}{6} \div \frac{2}{4} =$

### Exercise 27 – Level 3

| 5              |   | 2       |   |
|----------------|---|---------|---|
| <del>-</del> 6 | ÷ | <u></u> | = |







| of | fits into |  |
|----|-----------|--|
|----|-----------|--|

### Exercise 28 – Solution







# Exercise 28 – Level 2 $\frac{5}{6} \div \frac{3}{4} =$

| Exercise 28 -                    | Level 3 |  |
|----------------------------------|---------|--|
|                                  |         |  |
| 5 . $3$                          |         |  |
| $\frac{1}{6} \div \frac{1}{4} =$ |         |  |

| <b>†</b> | 1 |  |  |  |
|----------|---|--|--|--|

| of fits | s into |
|---------|--------|
|---------|--------|

### Exercise 29 – Solution







# Exercise 29 – Level 2 $\frac{5}{6} \div \frac{4}{5} = \frac{1}{1} \quad \text{of} \quad \frac{1}{1} \quad \frac{1}{1} \quad \text{of} \quad \frac{1}{1} \quad \frac{1}$

| <b>Exercise</b> | 29 - | Level | 3 |
|-----------------|------|-------|---|
|                 |      |       |   |

| 5              |   | 4              |   |
|----------------|---|----------------|---|
| <del>-</del> 6 | ÷ | <del>-</del> 5 | = |

















### Exercise 31 – Solution

$$\frac{5}{8} \div \frac{3}{5} = \frac{5}{8} \times \frac{5}{3} = \frac{5 \times 5}{8 \times 3} = \frac{25}{24}$$





### Exercise 31 – Level 2

 $\frac{5}{8} \div \frac{3}{5} =$ 





| Exercise 31 – Level 3            |
|----------------------------------|
| $\frac{5}{8} \div \frac{3}{5} =$ |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
| of fits into.                    |

### Exercise 32 – Solution $\frac{6}{8} \div \frac{3}{5} = \frac{6}{8} \times \frac{5}{3} = \frac{6 \times 5}{8 \times 3} = \frac{30}{24} = \frac{5}{4}$ $\frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{1}{8}$ $\frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{5}$ $\frac{1}{24} \quad \text{of} \quad \frac{3}{5}$

 $\begin{array}{c|c}
\hline
30 \\
\hline
24
\end{array}$  of  $\begin{array}{c|c}
\hline
3 \\
\hline
5
\end{array}$  fits into  $\begin{array}{c|c}
\hline
6 \\
\hline
8
\end{array}$ .





### Exercise 32 – Level 3

 $\frac{6}{8} \div \frac{3}{5} =$ 



of fits into.

### Exercise 33 – Solution

$$\frac{7}{8} \div \frac{3}{5} = \frac{7}{8} \times \frac{5}{3} = \frac{7 \times 5}{8 \times 3} = \frac{35}{24}$$







| Exercise 33 – Level 3            |  |  |
|----------------------------------|--|--|
| $\frac{7}{8} \div \frac{3}{5} =$ |  |  |
|                                  |  |  |
|                                  |  |  |
|                                  |  |  |
| 1 of =                           |  |  |
|                                  |  |  |

of fits into.









### Exercise 35 – Solution







### Exercise 35 – Level 2 $\frac{4}{9} \div \frac{1}{5} =$ $\frac{1}{9} = \frac{1}{9} =$

### Exercise 35 – Level 3

 $\frac{4}{9} \div \frac{1}{5} =$ 

| _ |     |   |   |     |                                              |   |   |   |   |  |   |   |   |   |   |   |   |   |   |                                              |   |   |                                              |   |   |   |     |   |   |   |   |   |     |   |   |          |   |   |   |   |   |   |     |   |   |   |   |   |   |
|---|-----|---|---|-----|----------------------------------------------|---|---|---|---|--|---|---|---|---|---|---|---|---|---|----------------------------------------------|---|---|----------------------------------------------|---|---|---|-----|---|---|---|---|---|-----|---|---|----------|---|---|---|---|---|---|-----|---|---|---|---|---|---|
| Г | 1   | 1 |   |     | П                                            | ī |   |   |   |  | ī | ī |   |   | ī | 1 |   | - | П | 1                                            | 1 |   |                                              | 1 |   |   | - 1 | П | 1 |   | 1 |   | - 1 | 1 |   | 1        |   | - | 1 | ī | 1 |   | - 1 | П | 1 |   |   | - |   |
| L | П   | П |   | - 1 |                                              | ш | П | - |   |  | ш |   |   |   | ш | П | П |   |   |                                              | П |   |                                              | П |   |   |     |   |   | П |   |   |     |   | ш | П        |   |   |   | ı | П |   |     |   | П | П | - |   |   |
| L | •   |   | • | _   | <u>.                                    </u> | • | • |   | _ |  | • | • | _ | _ | • |   | • |   | _ | <u>.                                    </u> | • | • | <u>.                                    </u> | • | • | • | _   | _ | • | • | _ | _ | _   | _ | • | <u>.</u> | • | _ | _ | • | • | • | _   | _ | • | _ | • | _ | • |
|   | A . |   |   |     |                                              |   |   |   |   |  |   |   |   |   |   |   |   |   |   |                                              |   |   |                                              |   |   |   |     |   |   |   |   |   |     |   |   |          |   |   |   |   |   |   |     |   |   |   |   |   |   |

|--|

| of fits into |
|--------------|
|--------------|

### Exercise 36 – Solution







### Exercise 36 – Level 2











| of | fits into |  |
|----|-----------|--|
|----|-----------|--|

### Exercise 36 – Level 3

 $\frac{4}{9} \div \frac{2}{5} =$ 





 $\frac{1}{\Box}$  of  $\frac{\Box}{\Box}$ 

of fits into.

### Exercise 37 – Solution



 $\begin{array}{c|cccc}
\hline
20 \\
\hline
\hline
27
\end{array}$  of  $\begin{array}{c}
\hline
3 \\
\hline
5
\end{array}$  fits into  $\begin{array}{c}
\hline
4 \\
\hline
9
\end{array}$ .



| Exercise 37 – Level 2            | 2        |              |         |
|----------------------------------|----------|--------------|---------|
| $\frac{4}{9} \div \frac{3}{5} =$ |          |              |         |
| <i>y</i> 0                       |          |              |         |
|                                  |          |              |         |
|                                  |          |              |         |
|                                  | 111111   | <br>11111111 | 1111111 |
|                                  |          | 111111111    |         |
| $\frac{1}{2}$ of                 |          |              |         |
|                                  |          |              |         |
|                                  | <u> </u> |              |         |
|                                  |          |              |         |

of fits into.

# Exercise 37 – Level 3

 $\frac{4}{9} \div \frac{3}{5} =$ 





1 of \_\_\_\_

| of fits into | of |  | fits into |  |
|--------------|----|--|-----------|--|
|--------------|----|--|-----------|--|

#### **Exercise 38 – Solution**







# Exercise 38 – Level 2

| 4              |   | 4             |   |
|----------------|---|---------------|---|
| $\overline{9}$ | ÷ | $\frac{-}{5}$ | = |









| of | fits into |  |
|----|-----------|--|
|----|-----------|--|

# Exercise 38 – Level 3

| 4              |   | 4 |   |
|----------------|---|---|---|
| $\overline{a}$ | ÷ | 5 | = |





|   |           | 1111111 |  |
|---|-----------|---------|--|
| 1 | of $\Box$ |         |  |

| of c | fits into |  |
|------|-----------|--|
|------|-----------|--|

#### **Exercise 39 – Solution**

$$\frac{9}{10} \div \frac{3}{7} = \frac{9}{10} \times \frac{7}{3} = \frac{9 \times 7}{10 \times 3} = \frac{63}{30} = \frac{21}{10}$$

|   | <del>10</del> | <del>10</del> | 10           | <del>10</del> | 10  | 10 | <del>10</del> | <del>10</del> | 10 | 10           |
|---|---------------|---------------|--------------|---------------|-----|----|---------------|---------------|----|--------------|
|   |               |               |              |               |     |    |               |               |    |              |
| Ė | <u>i</u><br>1 |               | 1 [          | 1             |     |    | 1             | 1 1           |    | <u>i</u>     |
| ı | <del> </del>  |               | <del> </del> | $\frac{1}{7}$ | - 7 | 7  | $\frac{1}{7}$ |               |    | <del> </del> |
| I |               | <u> </u>      |              |               |     |    |               |               |    |              |





 $\frac{63}{30}$  of  $\frac{3}{7}$  fits into  $\frac{9}{10}$ .



# Exercise 39 – Level 2

 $\frac{9}{10} \div \frac{3}{7} =$ 

|   | 10 | 10 | <u>1</u> | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
|---|----|----|----------|----|----|----|----|----|----|----|
| ı | 10 | 10 | 10       | 10 | 10 | 10 | 10 | 10 | 10 | 10 |





| of fits | s into |
|---------|--------|
|---------|--------|

#### Exercise 39 – Level 3

 $\frac{9}{10} \div \frac{3}{7} =$ 







| of | fits into |  |
|----|-----------|--|
|----|-----------|--|





# Exercise 40 – Level 2









| o | f $\square$ | fits into |  |
|---|-------------|-----------|--|
|---|-------------|-----------|--|

| Exercise 40 – Level 3             |              |           |  |
|-----------------------------------|--------------|-----------|--|
| $\frac{7}{11} \div \frac{1}{2} =$ |              |           |  |
|                                   |              |           |  |
|                                   |              |           |  |
|                                   |              |           |  |
|                                   |              |           |  |
| 1 of                              |              |           |  |
|                                   |              |           |  |
|                                   |              |           |  |
|                                   | of $\square$ | fits into |  |

### Exercise 41 – Solution





# Exercise 41 – Level 2

 $\frac{7}{12} \div \frac{4}{5} =$ 









| <br> |  |
|------|--|



# Exercise 41 – Level 3

 $\frac{7}{12} \div \frac{4}{5} =$ 









#### **Exercise 42 – Solution**







# Exercise 42 – Level 2

 $\frac{4}{13} \div \frac{2}{3} =$ 







# Exercise 42 – Level 3

 $\frac{4}{13} \div \frac{2}{3} =$ 







| of | fits into |  |
|----|-----------|--|
|----|-----------|--|