
Why a new method?

In school math, 'inference from sample to population' means using the sample to estimate the 
population proportion. For example, if we ask some randomly selected people whether they like 
chocolate, we would like to use the relative frequency of chocolate-liking people in the sample to 
estimate the proportion of people in the population who like chocolate. We will refer to this 
proportion in the population as the population proportion in the following. It is identical to the success 
probability or the probability of the event "A randomly selected person likes chocolate".
In technical terms, this is briefly referred to as the estimation of the parameter p.

For this purpose, two methods are shown in the school:

1) The point estimation: the population proportion is set to the same value as the relative frequency.

2) Interval estimation with confidence intervals.

Method 1 gives us an optimal estimation in the following meaning: If a sample is given, we may have 
drawn it from different populations. We now identify that population which conveys the highest 
probability to get the present sample.
While this method is good and correct, it is hard for middle school students to understand why  we 
obtain an optimal point estimator with this. Mistakenly, most students assume there is some type of 
natural law that forces the relative frequency of the sample to be similar to the population proportion.

Method 2 has the following problems:
- The method contradicts human intuition. In everyday life, we humans make inferences from the 
sample to the population by assigning probabilities to different possible populations. Thus, it might be 
desirable to have a method to infer mathematically correctly from the sample to the population in this 
way.

(American Statistical Association Releases Statement on Statistical Significance and p-Values:
http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN)*

- To help students understand why statistics works, we must address the following question: When we 
conduct a survey, we only interview a small part of the population. But what do we know about the 
people we didn't ask? With the method of confidence intervals, the answer is possible but relatively 
difficult to understand.

*See also: "A confidence interval is not a probability, and therefore it is not technically correct to say 
the probability is 95% that a given 95% confidence interval will contain the true value of the 
parameter being estimated."(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947664/)
and
"A 95% confidence level does not mean that for a given realized interval there is a 95% probability 
that the population parameter lies within the interval (i.e., a 95% probability that the interval covers 
the population parameter)."
(https://en.wikipedia.org/wiki/Confidence_interval#Common_misunderstandings)
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The problem

- It supports the erroneous view that the confidence level indicates the probability with which the 
actual population proportion is located in the confidence interval.
As a result, there is often a misinterpretation of the p-value in hypothesis testing, which is mistaken 
for the probability that the hypothesis is true.
The American Statistical Association has apparently also recognized this problem so that in 2016 it 
felt compelled to publish a statement clarifying the existing misunderstandings.



There is a possibility to get rid of all these problems at once: With a method that allows us to infer 
directly from the sample to the population. This method is called directly inferring statistics. We can 
start teaching this method from day one in stochastics class - all we need is to count blue and red balls 
in boxes. With little effort, we will then expand this method into an easy-to-understand and very 
effective way to do statistics.

Let's start with 5 boxes, each containing 4 balls that are either blue or red. Let all possible proportions 
of red balls be represented. (We could also focus on the proportions of blue balls, but out of pure 
arbitrariness we chose the red balls).
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Suppose we randomly draw with replacement 3 balls from one of the boxes without knowing from 
which one. We can then make a guess as to which box the sample was drawn from. If, for example, 
one blue and 2 red balls have been drawn, we could say: "It has probably been drawn from B3. It 
could also have been drawn from B1, but that would be improbable." If the sample consisted of 3 blue 
balls, we could think: "B0 is most likely and B3 is least likely."
We humans think like this. We assign probabilities to populations.

A brief comparison of probability theory and statistics will show how this works mathematically.

The method is based on the concept of conditional probability. In the above example, we can ask what 
the probability is that a specific sample is drawn from a specific box. 
For understanding conditional probability may be difficult for students, this method simplifies the 
process by honing in on the number of elements in the population, making it just as accessible as the 
Laplace probability.
Fortunately, with the help of combinatorics and integrals, we can apply this concept to populations of 
any size, while the underlying idea remains the same: the probability of a population is determined by 
dividing the number of certain samples by the number of all samples.

By the way: How challenging it is to understand conditional probabilities can be seen from the fact 
that many people believe that the following problem is unsolvable: There are two black and two white 
balls in a box. The balls are randomly drawn twice without replacement. What is the probability that a 
black ball is drawn the first time under the condition that a white ball is drawn the second time?
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The solution

The beginning - boxes and balls

Mathematical note
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P ((3,0)) = 0.064

P ((3,1)) = 0.288

P ((3,2)) = 0.432

P ((3,3)) = 0.216

Shown is the threefold random drawing of ordered samples with replacement from population B53. 
The samples with equal relative frequencies form the events that we assign probabilites to.

P ((5,1)) = 0.08

P ((5,2)) = 0.24
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In probability, we have a population (in this case with a determined population proportion of red 
balls) and we assign probabilities  to the possible samples (here with their different relative 
frequencies of red balls).

However, we can also assign probabilities  (based on a sample with a certain relative frequency  of 
red balls) to the populations (with their different population proportions of red balls) from which the 
sample can be drawn.

P ((5,3)) = 0.36

P ((5,4)) = 0.32

Probability, Relative Frequency, Population Proportion
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P ((3,1)) denotes the probability that the relative frequency of red balls in a sample of size 3 

is equal to     .
1
3

P ((5,2)) denotes the probability that in a population of size 5, the population proportion of 

red balls is equal to     .2
5



In probability, we have a given population and calculate the probability of samples with a certain 
relative frequency by dividing the number of samples with this relative frequency by the number of all 
possible samples from this population.
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B53

n = 3

g = 5

r = 3

8

36

54

27

P ((3,2)) = 54
8 + 36 + 54 + 27

= 54
125

= 0.432

Random experiment: Threefold
drawing of an ordered 

sample with replacement

The red balls are counted.

number of balls
in the sample

numbers of red balls
in the possible samples

number of balls
in the population

number of red balls
in the population

probability to draw
a (3 ,2) - sample

4
Probability - Counting Balls

number of all
(3 ,2)-samples

number of
all samples

of size 3

Samples of size n with k red balls we further call ( n , k ) - samples.

k = 0,1,2,3



1 2
4

1 4

3
3 2

5
5 1

4
32

5
1
4

3

2

5

B1 B2 B3 B4

1
2
3
4

5
5
5
5

5
5
5
5

1
2
3
4

5
5
5
5
5
5
5
5

5 5
5 5
5 5
5 5

1
2
3
4

1
2
3

4
4
4

1
2
3

5
5
5

4
5

1
1

4
5
4
5

2
2
3
3

4
4
4
4
4
4
4
4
4
4
4
4

1
2
3

4
4
4

1
2
3

5
5
5

4
5

1
1

4
5
4
5

2
2
3
3

5
5
5
5
5
5
5
5
5
5
5
5

4
5

4
4

4
5

5
5

1
1
1
1

4
5

4
4

4
5

5
5

2
2
2
2

4
5

4
4

4
5

5
5

3
3
3
3

1
2

3
3

1
2

4
4

1
2

5
5

3
4
5

1
1
1

3
4
5

2
2
2

3
3
3
3
3
3
3
3
3
3
3
3

1
2

3
3

1
2

4
4

1
2

5
5

3
4
5

1
1
1

3
4
5

2
2
2

4
4
4
4
4
4
4
4
4
4
4
4

1
2

3
3

1
2

4
4

1
2

5
5

3
4
5

1
1
1

3
4
5

2
2
2

5
5
5
5
5
5
5
5
5
5
5
5

3
4
5

3
3
3

3
4
5

4
4
4

3
4
5

5
5
5

1
1
1
1
1
1
1
1
1

3
4
5

3
3
3

3
4
5

4
4
4

3
4
5

5
5
5

2

2
2

2
2

2
2

2
2

2
3
4
5

2
2
2
2

2
3
4
5

3
3
3
3

2
3
4
5

4
4
4
4

2
3
4
5

5
5
5
5

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1

2
3
4
5

2
3
4
5

1
1
1
1

2
2
2
2
2
2
2
2

1
1
1
1

2
3
4
5

2
3
4
5

1
1
1
1

3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4

1
1
1
1

2
3
4
5

2
3
4
5

1
1
1
1

1
1
1
1

2
3
4
5

2
3
4
5

1
1
1
1

5
5
5
5
5
5
5
5

12

36

54

48

P ((5,3)) = 54
12 + 36 + 54 + 48

= 54
150

= 0.36
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n = 3

k = 2

g = 5

Given a sample with a certain relative frequency, we calculate the probability of a population by 
dividing the number of samples from that population by the number of all samples from all 
populations.

Probability of the
( 5 , 3 ) - population

Directly Inferring Statistics - Counting Balls

Random experiment: Threefold
drawing of an ordered 

sample with replacement

The red balls are counted.

number of balls
in the sample

number of red balls
in the sample

number of balls in
each population

numbers of red balls
in the populations

Populations with g elements and r red balls we further call ( g , r ) - populations.

r = 0; ... ;5

number of 
samples from the

( 5 , 3 ) - population

number of
all possible

samples

5



If we have combinatorics at our disposal for probability, we can deal with larger populations and 
larger samples. However, the calculations remain the same in principle. Again, given a population, we 
will calculate the probability for the samples with a certain relative frequency by dividing the number 
of samples with this relative frequency by the number of all possible samples.

n = 20

k = 11

g = 5

r = 3

1

4
32

5
B53

We now asume a population with g balls, of which r are red, and look for the probability of a sample 
of size n with k red balls. In other words, we are looking for the probability with which we can draw 
an (n ,k) - sample from a given (g , r) -population.

Let's take a look at a specific example: We have a population with g = 5 balls, of which r = 3 are red. 
We want to draw a sample of size n = 20 and ask for the probability that k = 11 balls in the sample are 
red. In doing so, we draw ordered samples with replacement.

S ((20, 11)) = (20
11)⋅311⋅(5−3)20−11We first calculate the number of all possible samples 

of size 20 with 11 red balls.

∑
i=0

20

(20
i )⋅3i⋅(5−3)20−iThen we calculate the number of all possible samples 

of size 20.

The quotient of both numbers is the probability of 
drawing a sample of size n = 20 with k =11 red balls 
from a given population with g = 5 balls, of which 
r = 3 are red.

P ((20, 11)) =
(20

11)⋅311⋅(5−3)20−11

∑
i=0

20

(20
i )⋅3i⋅(5−3)20−i

If we also take into account that ∑
i=0

20

(20
i )⋅3i⋅(5−3)20−i=520

we get the probability P ((20, 11)) =
(20

11)⋅311⋅(5−3)20−11

520

Hence: P ((20, 11)) =
15 233 848 381 440

520

P ((20, 11)) ≈ 0,1597

6Probability - with combinatorics



S ((n , k )) = (nk)⋅r k⋅( g−r )n−k

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 31 457 280 

448 266 240

4 034 396 160

25 719 275 520

123 452 522 496 

462 946 959 360 

1 388 840 878 080 

3 385 299 640 320 

6 770 599 280 640 

11 171 488 813 056 

 3 486 784 401

 46 490 458 680

 294 439 571 640

 1 177 758 286 560

 3 336 981 811 920

 7 118 894 532 096

 11 864 824 220 160

 15 819 765 626 880

 17 138 079 429 120

 15 233 848 381 440

1 048 576 

k=5

k=4

k=3

k=2

k=1

k=0

k=9

k=8

k=7

k=6

k=10

k=11

k=12

k=13

k=14

k=15

k=16

k=17

k=18

k=19

k=20

P ((n , k )) =
(nk)⋅rk⋅(g−r )n−k

∑
i=0

n

(ni )⋅r i⋅(g−r )n−i

P ((n , k )) =
(nk)⋅r k⋅(g−r)n−k

g n

In general, wie have the number of (n ,k ) - samples from a 
(g , r ) -population

and the number of all samples of size n from a (g , r ) -
population, ∑

i=0

n

(ni )⋅r i⋅( g−r )n−i

from which we can calculate the probability of 
drawing an (n ,k ) - sample from a given (g , r ) -
population.

∑
i=0

n

(ni )⋅r i⋅( g−r )n−i=gnIf we also consider this equation

we can write

After a brief reshaping, this calculation looks like the 
binomial distribution we are used to. P ((n , k )) = (nk)⋅( rg )

k

⋅(1− r
g )

n−k

7

Probability - with combinatorics

The probabilities of the possible samples for g = 5, r = 3 
and n = 20 are shown below as a bar chart.



n = 10

k = 6

g = 20

r = 13

We now assume a sample of size n with k red balls and look for the probability of drawing this sample 
from a population with g balls, of which r are red. In other words, we are looking for the probability 
with which we can draw a given (n ,k ) - sample from a (g , r ) -population.

If we have combinatorics available for directly inferring statistics, we can also deal with larger 
samples and larger populations. Here too, the calculations remain the same in principle. Again, given 
a sample with a certain relative frequency, we will determine the probability  of a population  by 
dividing the number of samples from this population by the number of all possible samples.

Let's take a look at a specific example: We have given a sample of size n = 10 with k = 6 red balls and 
populations with g = 20 balls each. We ask for the probability with which a sample can be drawn from 
a population with r = 13 red balls. We draw ordered samples with replacement.

We first calculate the number of all possible 
samples that can be drawn from a population of 
20 balls, 13 of which are red.

S ((20,13)) =(10
6 )⋅136⋅(20−13)10−6

Then we calculate the number of all possible 
samples that can be drawn from populations with 
20 balls.

∑
i=0

20

(10
6 )⋅i6⋅(20−i)10−6

The quotient of both numbers is the probability 
of drawing a given sample of size n = 10 with 
k = 6 red balls from a population with g = 20 
balls, of which r = 13 are red.

P ((20,13)) =
(10

6 )⋅136⋅(20−13)10−6

∑
i=0

20

(10
6 )⋅i 6⋅(20−i)10−6

P ((20,13)) = 2433725365890
18618197650500

P ((20,13)) ≈ 0,1307

Hence we have:

We have thus proceeded in a very similar way to 
the probability calculation. There we calculated 
the probability of a possible sample from a given 
population; here we calculate the probability of a 
possible population for a given sample.
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Statistics - with combinatorics



r=5

r=4

r=3

r=2

r=1

r=0

r=9

r=8

r=7

r=6

0

27 367 410

1 410 877 440

12 786 229 890

56 371 445 760

166 113 281 250

376 390 748 160

705 636 348 690

1 141 521 776 640

1 633 973 813 010

r=10

r=11

r=12

r=13

r=14

r=15

r=16

r=17

r=18

r=19

r=20

2 100 000 000 000

2 440 874 461 410

2 568 423 997 440

2 433 725 365 890

2 049 238 517 760

1 495 019 531 250

901 943 132 160

410 580 048 690

114 281 072 640

9 879 635 010

0

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P ((g , r )) =
(nk)⋅rk⋅(g−r )n−k

∑
i=0

g

(nk)⋅i k⋅( g−i)n−k

S ((n , k )) =(nk)⋅r k⋅( g−r )n−kIn general, we have the number of (n ,k ) - samples from 
a (g , r ) - population

and the number of (n ,k ) - samples from all populations 
with g elements, ∑

i=0

n

(ni )⋅r i⋅( g−r )n−i

from which we can calculate the probability of drawing 
a given (n ,k ) - sample from a (g , r ) -population.

If we visualise the probabilities for each possible population with g = 20 balls (for a given (10 , 6) -
sample) in a bar chart, a similar picture emerges as in the case of the binomial distribution. This fits 
with what we intuitively expect anyway: we have probably drawn a sample with a certain relative 
frequency of red balls from a population with a similar proportion of red balls. We may also have 
drawn this sample from a very dissimilar population. But that would be unlikely.
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Statistics - with combinatorics



Probability:
If the numbers become too large with larger sample sizes, we determine the probabilities of samples 
by using the density function of the normal distribution.

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 

L ( x) =(nk)⋅xk⋅(1−x )n−k

1

4
32

5
B53

Directly Inferring Statistics:
If we do not want to limit ourselves in the number of populations from which we can draw a sample, 
we can use the likelihood function to determine the probabilities of arbitrary populations.
In this case, the function term of the likelihood function looks almost like the Bernoulli formula - only 
in the Bernoulli formula k  is the variable, while the function variable x  of the likelihood function 
stands for the probability of success (or the population proportion).
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Probability and statistics with continuous functions

(10 , 6 ) - sample



L (x)

x

n = 10

k = 6

To calculate the probability, we first determine the area between the curve and the x-axis in the limits 
from 0 to 1.

For every sample there is exactly one likelihood 
function. We denote the likelihood function to the 

(10 ,6 ) - sample by L 10,6.

The probability of drawing an (10 ,6 ) - sample from a population with a population 
proportion of, for example, 0.6 to 0.8 is equal to the quotient of the marked area and the 
total area under the curve between 0 and 1.

The definite integral multiplied by 11 in the limits from 0.6 to 0.8 then gives the sought probability.

0.50.40.30.20.10 0.6 0.7 0.8 0.9 1
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Likelihood function and probabilities of intervals



If we estimate the population proportion from a sample with the likelihood function, it 
happens exactly what we humans intuitively expect from such estimates. E.g.: The larger 
the estimate, the more probable it is.

Likelihood Function - Precision

L (x)

x

L (x)

x

0.50.40.30.20.10 0.6 0.7 0.8 0.9 1

0.50.40.30.20.10 0.6 0.7 0.8 0.9 1
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The larger the sample size, the more precise the estimate.
For sample sizes 10, 100 and 400, the interval is shown in which the population 
proportion lies with a probability of approx. 90 %.

L (x)

x

L (x)

x

L (x)

x

0.50.40.30.20.10 0.6 0.7 0.8 0.9 1

0.50.40.30.20.10 0.6 0.7 0.8 0.9 1

0.50.40.30.20.10 0.6 0.7 0.8 0.9 1
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Likelihood function and sample size


