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Probability Theorie

The Basics

This section aims to present probability theory reduced to simple principles. It deals
exclusively with material that can be taught in general education schools.

What is probability theory about? From a certain point of view, one could say: it
is about making predictions for the future. With the help of probability theory, we
can say how likely different futures are.

When we work with probability theory, we have a random experiment and know
the probability of an event E. If we perform the random experiment several times
that is, n times we obtain a relative frequency hn(E) of the event E. The whole art
of probability theory now lies in determining the probability of a relative frequency
P(hn(E)).

If we toss a fair coin 10 times, we want to know, for example, how likely it is to
get exactly 5 H (H ≡ heads ≡ head). Which means the relative frequency of H equals
1
2 . Or we roll a die three times and want to know how likely it is that the relative
frequency of the event “rolling a 6” is at least 1

3 .
Now, many people find this question contradictory because we cannot know what

will happen in the future. Nobody can predict the future! In addition, the statement
of a probability can be understood as something uncertain or speculative. Therefore,
we have to face the following fundamental question:

What do we know about random experiments
that we have not yet performed?

If we use our standard model, in which we draw balls from a box, and we call the
set of all balls the population and the drawn balls the samples, then we can phrase
the question as follows:

What do we know about the samples
that we have not drawn yet?

We do not know what the outcome of a single random experiment will be, but we
can specify which possible combinations of outcomes exist if we repeat the random
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experiment several times. For this we use combinatorics. Combinatorics holds today
and as we assume also in the future, and there is nothing uncertain about it. We
can state exactly which and how many combinations of outcomes there are and what
relative frequencies they have. In this way, we can assign probabilities to the different
relative frequencies. At first, we will achieve this by simple counting. So we can
answer the fundamental question stated above as follows:

We know how likely the different relative frequencies are.

This statement about probability has nothing uncertain about it, because it is a
statement about numbers of combinations. A probability statement is therefore a
statement about existing possibilities. Mathematics says nothing about what will ac-
tually happen.

We can even go one step further and reduce probability theory to an extremely
simple main theorem: We will find that there are many combinations whose relative
frequencies of outcomes are close to the probabilities of the outcomes, and that there
are few combinations whose relative frequencies of outcomes are far away from the
probabilities of the outcomes.

So we have the Main Theorem of Probability Theory:

Most relative frequencies are similar to the probability.

If we start from our standard model of drawing balls from a box with blue and
red balls, we can state this theorem even more clearly. Since we draw balls from a
population (all the balls in the box) and the possible combinations of blue and red
balls are called samples, we can write:

Most samples are similar to the population.

This main theorem will guide us toward understanding probability theory and
the relationship between relative frequency and probability. We will be able to un-
derstand mathematically why, when tossing a coin 100 times, we expect a relative
frequency of the outcome H of about 0.5: because there are many more combinati-
ons with relative frequencies of H near 0.5 than there are other combinations. Then
we no longer need to speculate whether, after many repetitions of the experiment,
there might be some strange kind of convergence and the coin might not be able to
do what it wants, but we will simply assign a probability to each possible relative
frequency. In this way, we will know how likely each future is.

We live in a world in which
1) relative frequencies are important, and
2) there are extremely many more combinations of outcomes with relative fre-

quencies that are similar to the probabilities of the outcomes than there are other
combinations of outcomes, when we repeat a random experiment many times.

In many areas, it has proven useful to bet on those combinations for the future of
which there are very many. That is what makes the success of probability theory.
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Probabilities of Relative Frequencies
Let us start with the simplest random experiment imaginable: We
have the box B21 with one blue and one red ball. We draw ran-
domly with replacement and with order. The probability for blue
is, just like the probability for red, equal to 0.5.

When we draw a ball, we record the color and number of the
ball and put it back. The notation shown on the left can then be
understood as one possible outcome of fourfold random drawing
with replacement and with order from B21 or also as an ordered
sample of size 4 from the population B21.

Now we can write down the possibilities of double, triple, quadruple, etc. draws, orga-
nized by relative frequencies. For comparability reasons, we here decide to illustrate
only even numbers of draws.

For simplicity, we will almost always call the drawn sequences of blue and red balls
samples, rather than outcomes of multiple draws.

Even without knowledge of combinatorics, students can recognize the following illu-
strations as complete lists of all possible samples of size 2, 4, 6, etc. from B21.
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Abb. 1 Samples of size 2

Abb. 2 Samples of size 4

Abb. 3 Samples of size 6
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Abb. 4 Samples of size 8

We can calculate the probability that the relative frequency of red in a sample of size
6 is equal to 1

3 by dividing the number of samples with this relative frequency by the
total number of possible samples, that is

P
(

h6 =
1
3

)
=

15
1+6+15+20+15+6+1

=
15
64

≈ 0.234

In this way, for a given sample size, we can assign a probability to each possible
relative frequency of red balls.

Notes on Didactics
1) In the introductory lessons of probability theory, the expression P

(
h6 =

1
3

)
will

probably be replaced by a more intuitive one, which is not a problem for the
further content development.

2) Apart from fraction arithmetic, nothing else is required as prior knowledge.
3) With more than two balls in the box and for larger sample sizes, we will not get

very far by drawing the balls manually, but the principle of determining probabi-
lities of relative frequencies will not change.
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Relationship between Relative Frequency and Probability

If we convert the diagrams with blue and red balls into bar charts, we can place the
resulting charts with sample sizes up to 10 side by side and compare them.
For better clarity, the four outer bars are colored blue and the middle bar is colored
red.

Abb. 5 Counts of samples of size 4, 6, 8, and 10
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Two things can be observed from this diagram:
1) There are more samples in the middle than at the edges.
2) These differences become larger as the sample sizes increase.

One conclusion is that the probability for a middle outcome becomes larger the more
often we perform the experiment. And since the middle contains the outcomes whose
relative frequencies of red balls are close to 0.5, it follows: The probability that the
relative frequency of red is close to the probability of red increases the more often
we perform the experiment.
Or formulated even more simply:

It becomes increasingly likely that
the relative frequency of red balls is close to 0.5.

More generally:

As the number of repetitions of the experiment increases, it becomes increasingly
likely that the relative frequencies of an event

approach its probability.

And this formulation may also be useful:

There are more combinations whose relative frequencies of an event
are close to the probability of the event than there are
other combinations. These differences become larger
the more often we perform the random experiment.

In terms of statistics, this means: The larger the sample size, the greater the probabi-
lity that the sample is similar to the population where ßimilar"here means that the
relative frequency of an event in the sample is close to the probability of that event.
In other words: The larger the sample size, the greater the probability that the relative
frequency is close to the population proportion.
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Let us look at another random experiment:
If we have one blue and two red balls in the box, we observe a
similar pattern only with the difference that now the counts of
the samples whose relative frequencies of red balls are close to
2
3 increase faster than the other samples.

Abb. 6 Samples of size 2 from B32

Abb. 7 Samples of size 4 from B32
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Abb. 8 Samples of size 6 from B32
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And another example is shown: We draw from B51 and the clustering of the relative
frequency occurs at or near 1

5 .

Abb. 9 Samples from B51
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Note on Didactics
Even if students cannot calculate the individual counts of combinations without
knowledge of combinatorics, such diagrams make sense in introductory probability
lessons, because they can provide a good intuition for the actual relationships bet-
ween relative frequencies and probabilities. The illustrated counts can, in this case,
serve as purely observational facts without computational proof.

The Galton Board

There is an excellent way to make the relationship between relative frequency and
probability literally tangible: The Galton Board!

In the previous section, we considered the basic experiment of dra-
wing a ball from the box B21, which contains one blue and one red
ball. The probability for the blue ball is equal to the probability for
the red ball, 0.5. If we then replace the ball and draw again, we find
the same probabilities again.

It is similar with the Galton Board. A ball falls from the top onto the first round
wooden peg. The ball can then fall either to the right or to the left. If the peg is
positioned exactly in the middle, the probability of falling to the right is 0.5. The
probability of falling to the left is also 0.5.

Regardless of whether the ball falls to the right or left, it hits another centrally
positioned peg, at which it falls to the right with probability 0.5 and to the left with
probability 0.5, and so on.

If the ball remains in the middle bin, it has previously fallen to the right and to
the left equally often. This corresponds to an outcome with as many blue as red balls
from our previous experiment. For the ball to remain in a bin to the right of the center,
it must have fallen to the right more often than to the left. For the rightmost bin, the
ball must have deflected to the right at every peg.

If we let many balls fall through the arrangement of pegs, we typically obtain a
ball pattern like the one shown in the photo.
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Abb. 10 Galton Board: When a ball hits a peg, it can fall to the left or to the right. Both possibilities
have a probability of 0.5. The same situation occurs at the next level. Shown is a Galton Board with

eight levels.

If we distinguish the possibilities left and right at each level of this Galton Board,
the 8-tuples corresponding to a ball falling into one of the middle bins have a relative
frequency of right of approximately 50%. We observe that more balls are in the
middle than at the edges. But why is this so? It is not because the balls want to
balance falling left and right, nor because they must obey a law of chance, but quite
simply because more paths lead to the middle than to the edges. Once again, we can
see that the relationship between relative frequency and probability is a matter of
combinatorics, not of convergence.

For this insight, it is initially sufficient to count the paths of the first levels. This
process is illustrated in the following figure. Here six paths lead to the middle and
only one to the right edge.
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Abb. 11 Galton Board, more paths to the middle

Even without investing further mathematics, we can already see what the main
misunderstanding regarding the empirical law of large numbers is: The relative fre-
quency does not have to approach the probability even after very many repetitions
of the experiment. Applied to the Galton Board, this would mean that a ball could
no longer fall to the right or left after a certain number of levels. We would have to
physically install a barrier so that a ball that has already fallen to the right many times
cannot fall to the right again, because after all, the ball does not know its position.
Even though we have only seen an eight-level Galton Board, it is technically clear:
Even if we add arbitrarily many levels to the Galton Board, the relative frequency
can always deviate as far as imaginable from the probability. At each level, the ball
always has the possibility, for example, to fall to the right.

Pascal’s Triangles

If we want to know how many paths lead to each bin without using combinatorics,
we can use Pascal’s Triangle. This triangle is built level by level from top to bottom,
by adding a 1 on each side at the outer edges on every level, and forming the inner
numbers as the sum of the numbers directly above to the left and right. This corre-
sponds exactly to the path of a ball through the Galton Board: To hit a peg or fall
into a bin, the ball can come from the top left or the top right. The sum of the paths
from the top left and top right is the number of paths that lead to this peg or the
corresponding bin.
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Abb. 12 Pascal’s Triangle

Applied to the experiment of drawing a ball from B21, it could look, for example,
like this:

Abb. 13 Pascal’s Triangle, drawing balls from B21

From the bar charts we constructed for repeated draws from B21, we saw that
there are more combinations in the middle than at the edges. We could also observe
that this trend becomes stronger the more we draw. With Pascal’s Triangle, we can
additionally see why this is the case: Because only a single 1 is added at the outer ed-
ges from level to level, the counts of combinations at the edges increase only slowly.
In the middle, however, already large numbers are summed, resulting in even larger
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numbers.

Extended Pascal’s Triangles

If we draw from B32, we can determine the counts of pos-
sibilities entirely without combinatorics using an extended
Pascal’s Triangle.

To motivate this method, let’s look at how we can proceed with repeated draws from
B32 to list all combinations of blue and red balls.

Abb. 14 Extended Pascal’s Triangle Step from 1 to 2

Abb. 15 Extended Pascal’s Triangle Step from 2 to 3
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There are many ways to list all combinations of balls from B32. To obtain, for exam-
ple, all 3-combinations with exactly one red ball, we can
1) add the available red balls on the right to all pairs that contain no red ball, and then
2) add the blue ball on the right to all pairs with exactly one red ball.
Continuing this systematic procedure, we obtain the following extended Pascal’s Tri-
angle.

Abb. 16 Extended Pascal’s Triangle

Specifically for drawing from B32, we can also design the extended Pascal’s Triangle
as follows:
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Abb. 17 Extended Pascal’s Triangle, drawing from B32

Here too, we can read off various regularities concerning the relationship between
relative frequency and probability. For example, the clustering now occurs further to
the right of the center, which is not surprising since on the right side twice as many
combinations are added as on the left side. We also see that the counts grow much
faster than when drawing from B21. Many people who see these numbers for the first
time are surprised by how quickly the counts of combinations grow, even though
there is önlyöne more ball in the box.
Finally, the development of the counts of combinations when drawing from B10;7 will
be illustrated with an extended Pascal’s Triangle.
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Abb. 18 Extended Pascal’s Triangle, drawing from B10;7

Consequences

No restriction of relative frequency. From Figure 4, p. 5, we can draw an important
insight: We do not only have many samples in the middle, but also a sample consi-
sting entirely of blue balls on the far left and a sample consisting entirely of red balls
on the far right. Therefore, although it is more likely to draw a sample from the midd-
le, we cannot exclude the two samples at the edges just as the random experiment
cannot, because it knows nothing about our diagram. The random experiment simply
produces one of the possible samples, without regard to what we humans consider
usual or unusual. Each individual sample has the same probability, and so a sample
from the edge can also be produced by the random experiment.
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The situation does not fundamentally change even if the samples have larger sizes,
e.g., 100 or 1000. While the two edge samples become increasingly unlikely relative
to the samples in the middle, every possible sample still has the same probability. So
why should a sample from the middle be ällowed"while a sample from the edge is
too unlikely?

As a consequence: Although it becomes more likely to draw a sample from the
middle as the sample size increases, we cannot exclude a single one of the possible
samples. Therefore, even for very large sample sizes, samples can be drawn whose
relative frequencies of red balls are far from the middle. Thus, there can be no talk
of the relative frequency having to approach the probability or stabilize.

This applies to all other fillings of the box with blue and red balls as well: as
long as there is at least one blue and one red ball in the box, a purely blue or purely
red sample can also be drawn, in which case the relative frequency of blue or red is
maximally far from the probability.

No restriction of the population. If we infer from the sample to the population,
we can analogously exclude no populations as the source of the sample: if half the
balls in a box are blue and the other half red, we can draw a sample consisting only
of blue or only of red balls regardless of the sample size. To draw a sample with
only blue balls, it is sufficient that there is just one blue ball in a box and, e.g., the
other 99 balls are all red. Such a sample is not less likely than any other sample and
therefore can be drawn just like any other. So if we have only blue balls in a sample
and 100 balls in the box, there could be between 1 and 100 blue balls in the box.

Thus, we cannot rely on the fact that, if the sample is large enough, the relative
frequency of red balls in the sample will already be similar to the population pro-
portion of red balls, i.e., the probability of red. Humans have no way to exclude a
population proportion based on a sample (except for the trivial case that there must
be at least one blue and one red ball in the box if both blue and red balls appear in
the sample).

Of course, after ënoughrepetitions of the experiment, one can simply take the re-
lative frequency as an estimate for the population proportion, hoping that the relative
frequency will be close to the population proportion. But it is certainly more logical
and informative to assign probabilities to the different possible population propor-
tions based on the observed relative frequency that is exactly what is intended in
direct inferential statistics.

Maximum Likelihood Estimator. The established method in mathematics, which
is sometimes claimed to „equate“ the relative frequency with the probability, is called
the Maximum Likelihood Estimator, but it has a completely different logic: Among
all possible populations, the one is sought from which the observed sample can be
drawn with the highest probability. This has nothing to do with the false statement
that the probability (in our case the proportion of red balls in the box) must be close
to the relative frequency (the proportion of red balls in the sample). A closer exami-
nation of the Maximum Likelihood Estimator is given in the section on the basic
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questions of statistics.

Weak Law of Large Numbers illustrated. What we have seen in the diagrams
are the essential statements of the Weak Law of Large Numbers, which is correct
and proven. We could gain these insights already after just a few repetitions of the
experiment. Given this, why would one still need a vaguely formulated and additio-
nally false claim that after many repetitions the relative frequency must approach the
probability?

In simple terms, the Weak Law of Large Numbers states: If we define an (possibly
very small) interval around the probability of an event, then it becomes increasingly
likely, as the number of repetitions increases, that the relative frequency lies within
this interval. Moreover, it not only becomes more likely, but the probability even
converges to 1. This means: If we divide the number of combinations that fall within
the interval by the total number of combinations, the result approaches 1 more and
more as we repeat the experiment often enough. Although the following diagrams do
not prove this insight, they strongly suggest it.
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Abb. 19 Weak Law of Large Numbers illustrated

Misinterpretation. A „popular“ misinterpretation of the Weak Law of Large
Numbers should be pointed out: This law says nothing about what will actually hap-
pen if we repeat a random experiment many times. For example, it does not claim
that if we flip a coin frequently, the relative frequency of H will eventually fall within
a chosen interval around 0.5. Instead, the Weak Law of Large Numbers tells us some-
thing about what proportion of theoretically possible outcomes lies within or outside
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a chosen interval for a given number of repetitions. It is therefore a statement about
the set of all theoretically possible outcomes, not a prediction of which outcomes
will occur in actual repetitions of the coin toss. The two statements have nothing to
do with each other.

Looking at many trials vs. looking at combinations. In connection with the
empirical Law of Large Numbers, it is repeatedly emphasized that it is certainly
correct if the random experiment is repeated often enough. This often leads to a
strange and entirely unmathematical argument: Even if, after a certain number of
trials, an undesirable relative frequency occurs, the experiment is supposedly just not
repeated enough times. So if the relative frequency of H in a coin toss is too high, one
simply has to toss the coin more times, and then the relative frequency will eventually
settle around 0.5. This reasoning is almost the opposite of empiricism: Even if one
empirically observes that a law does not hold, it still holds, because the result at hand
does not count.

If we want to toss a coin, for example, 100 times, mathematics can tell us some-
thing about which outcomes are possible. We can organize these possible outcomes,
classify them, or check which of these outcomes fall within a chosen interval and
which do not. What we cannot do, however, is predict which outcome will occur if
we toss the coin 100 times. Mathematics, for example, knows nothing about what
will happen if we have tossed the coin 50 times and H has appeared too often. The
point of randomness is that we do not know this.

Binomial distribution instead of convergence. The discussion about the mea-
ning of the empirical Law of Large Numbers and the possible convergence of rela-
tive frequencies is not without a certain humor: In middle school, students are told
that the relative frequency must converge, only to explain to the same students a few
years later, using binomially distributed random variables, that this exactly does not
happen.

The typical bar charts that illustrate the probability distributions of binomially dis-
tributed random variables are basically the same as those we initially saw by drawing
blue and red balls. We always have a scale from far left to far right and somewhere
usually in the middle a point where the possible outcomes accumulate or where the
probabilities are particularly high. At the edges, there are far fewer possible outco-
mes and the probabilities are much lower. The more often a trial is conducted or the
longer the Bernoulli sequence is, the more pronounced this difference becomes. Ho-
wever, even after a very large number of trials, we never reach the point where part
of the scale remains empty. There are always outcomes at the far left or far right of
the scale, and of course, these outcomes can occur. But why then tell middle school
students that there are outcomes too unlikely to occur?
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Abb. 20 Binomial distributions

Does the Probable Happen More Often Than the Improbable?

We humans bring order to our lives and daily routines by „seeing“ regularities in the
events around us. One of these is the object concept: A child must first learn that the
ball that rolled behind a door is not gone, but still exists there and can be retrieved at
any time.

When organizing our daily lives, we follow various principles: We choose the
regularity that is simplest, most practical, safest, etc. Instead of understanding the
ball as an object that exists behind the door, we could also assume that the ball
ceases to exist whenever we do not see it and only re-enters existence when and
perhaps because we look at it.1 However, this way of thinking is likely much more
complicated than the object concept and therefore finds few adherents.

The rule that the probable happens more often than the improbable, and also the
reverse rule, namely that something that happens frequently is likely and something
that happens rarely is unlikely, belongs to the regularities that structure our lives.
Perhaps some people also respond with hostility to any question that might call this
principle into doubt.

Let us nevertheless look at what mathematics says. We cannot mathematically
speculate about what will happen in the future, but if we specify how many times
we want to perform a random experiment, we can calculate. If we, for example, plan
to toss a coin 1000 times in the future, we can already say which 1000-tuples are

1It can be very productive to discuss with students whether aliens would use mathematics. What if aliens had a
completely different concept of reality than we do and believed that nothing exists when one closes their eyes and
the world is recreated when one opens their eyes assuming aliens have eyes. But one does not even need to engage in
literally in this case otherworldly considerations: Would we have the same mathematics if humans could effortlessly
recognize quantities? If we knew how many sheep are on the meadow without counting? We can recognize a single
black sheep in a large flock of white sheep at a glance. Would we have different mathematics if we could not do that?
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possible. We also know all possible relative frequencies of H and can give their pro-
babilities. We can also order the 1000-tuples by changes in color or by any other
criterion and determine the probabilities of the relative frequencies generated accor-
ding to these criteria.

What we absolutely cannot do, however, is exclude a particular 1000-tuple from
occurring. Each has the same probability, because each 1000-tuple occurs only once
in the set of all possibilities. Therefore, there are no regularities in these 1000-tuples
that influence the occurrence of certain outcomes, just as the coin during the trials
does not follow laws that could affect the relative frequency of, for example, H.

The concept that the probable occurs more often than the improbable also assu-
mes that coins, dice, etc., always behave similarly. If a coin has shown H in approxi-
mately 50% of the trials so far, it should do so in the future and even more so in the
long run. This principle is strong causality: Similar causes lead to similar effects. (As
opposed to weak causality: Only exactly identical causes lead to identical effects.)
Humans could hardly manage daily life if we did not believe in these principles.

Randomness, however, spoils this „calculation“: If from now on we perform
exactly 10,000 coin tosses in our lives, we could get H 10,000 times without the
coin or our tosses being special in any way. In other words, it could happen that
from now on, every time we toss a coin, we get only H for no deeper reason. Then
what is probable namely achieving a relative frequency of H of about 0.5 simply
would not happen. Thus, the probable does not necessarily happen more often than
the improbable.

Are the Causes Probable? The situation is similarly catastrophic regarding the
causes of random outcomes. If we draw balls from a box with replacement and after
many trials we have drawn very few blue and very many red balls, this does not
mean that the box contains mostly red balls. So, if something happens frequently
like drawing red balls this does not mean that the probability for it must be high. The
cause can also be extremely unlikely. As long as we do not have the possibility to
open the box and look inside, we humans have no way to exclude certain proportions
of blue or red balls in the box (except for 0 and 1).

In short, the regularities that the probable happens more often than the improbable
and that what happens frequently is likely collapse as soon as we specify how often a
random experiment is to be performed. Then we can even indicate how probable the
completely improbable is. On the other hand, mathematics can also make us notice
that everything that happens is unique, even though we are often not aware of this in
everyday life.
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