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The Weak Law of Large Numbers
In fact, the probability 𝑃 that the relative frequency of an event 𝐸 lies close to
the probability 𝑃𝐸 of that event becomes larger and larger as the number of trials
increases. This is, so to speak, the everyday-language version of the weak law of
large numbers.
The probability that the relative frequency of an event lies within a certain interval
around the probability of that event increases as the number of trials grows, and
it even converges to 1.
We need a clear understanding of the connections between probability and rela-
tive frequency, or between sample and population, and we cannot wait until the
mathematical tools for binomial distributions and statistical inference are intro-
duced. We use probability from the very beginning to make statements about
the future. For example, we want to know how many winning tickets we can
expect if we buy 10 tickets and the winning probability is 1

20 . In everyday life,
we often infer probability from (often very small) samples: if someone rolls a six
three times in a row, something seems suspicious, doesn’t it?
We will now look at two methods by which we can classify the relationships
between these basic concepts. 1) From the population to the sample, or from
probability to relative frequency: If we understand the empirical law of large
numbers as a topic of combinatorics, we can reason mathematically exactly with-
out relying on some vague “stabilizing” or “settling down.” In other words, the
weak law of large numbers has its roots in combinatorics. 2) From the sample to
the population, or from relative frequency to probability: With direct inferential
statistics we can work with very small populations and equally small samples and
establish the relationships without guessing or estimating.
1) Let’s start with the simplest random experiment imaginable: We have a box
with one blue and one red ball. We draw with replacement and order matters.
Now we can list all possible outcomes of drawing two, three, four, etc. times,
arranged by relative frequencies.
Since the set of outcomes of, say, drawing five times is completely known, we can
regard this fivefold draw as a single draw of an 8-tuple. The probability for a
relative frequency of, for example, 3

8 is then the ratio of the number of 8-tuples
with two red balls to the total number of 8-tuples, that is 56

256 = 0.21875.
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What do we know about the future?
What have we achieved so far? With probability theory, we want to predict what
will happen in the future. If we know how many blue and red balls are in the
box, then in the random experiment “drawing once from the box,” we cannot
predict what will happen on the next draw, but we can specify the probabilities
for “blue” and “red.” If we want to draw five times, we still cannot predict the
outcome, but we can assign probabilities. For example: How likely is it that the
relative frequency of “red” is similar to the proportion of “red” in the box? If
“similar” means that the relative frequency is equal to 3

8 , 4
8 or 5

8 , then we divide
the number of 8-tuples with 3, 4, or 5 red balls by the total number of 8-tuples
and get the probability 182

256 = 0.7109375.
Even though the methods used so far are still quite down-to-earth, we can already
see the whole principle: Once we decide how many times we want to perform the
random experiment (that is, we decide which “future” we are talking about), we
can list the corresponding set of outcomes and assign probabilities to all possible
future scenarios. We do not need to discuss whether the relative frequency “ap-
proaches” or “stabilizes,” nor do we need to speculate about what would happen
in infinitely many trials.
We see that there are more possibilities in the middle than at the edges, and
that this difference increases the more often we draw. It may be a bit tedious to
list and count all possibilities, but it is possible even without any combinatorial
knowledge. So it becomes more and more likely that the relative frequency of
red balls is close to 1/2. Thus, we move directly toward the weak law of large
numbers — and that only by counting blue and red balls.
We can also see that, no matter how many times we draw, there are always results
whose relative frequencies are as far as possible from the base probability. Such
a result is just as likely as any other and therefore can occur as well.
And we can also see this: exact predictions are less likely than approximate ones.
If we want to know how likely it is that the relative frequency is roughly 0.5, we get
a greater probability than if we ask whether the relative frequency is exactly 0.5.
Interestingly, the probability that the relative frequency is exactly 0.5 becomes
smaller and smaller and even goes to 0, although that might not be apparent
from the graphs.
The empirical law of large numbers is not correct, not only because it was not
formulated by Bernoulli, but also because it is usually expressed vaguely. It
cannot be correct in a mathematical sense.
We know what actually converges: Not the relative frequency of an event toward
the probability of the event, but the probability that the relative frequency of
an event differs from the probability of the event by more than a given amount
converges to 0.
In fact, the weak law of large numbers (among other things) can be expressed in a
simplified way as follows: The probability that the relative frequency of an event
differs from the probability of the event by more than a given amount converges
to 0 as the number of trials approaches infinity.
Also because it is often claimed that the weak law of large numbers ensures the
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empirical law of large numbers or that it means the relative frequency converges
to the probability, we will show here what this law actually says.
The weak law of large numbers states:

lim
𝑛→∞

𝑃 (|ℎ𝑛(𝐸) − 𝑝| > 𝜖) = 0

where ℎ𝑛(𝐸) is the relative frequency of an event 𝐸 after 𝑛 trials, 𝑃 is the prob-
ability of the event in parentheses, 𝑛 is the number of trials, 𝑝 is the probability
of event 𝐸, and 𝜖 is a real number greater than 0.
Let’s apply this law to coin tossing:
Let the event E consist only of the outcome H. Then the probability p of this
event is 0.5. To make things concrete, let’s choose a specific number for n, say 20.
So we consider the 20-fold coin toss. Every sequence of H ’s and T ’s of length 20
is a possible outcome 𝑒 of the 20-fold toss. To each of these sequences, we assign
the relative frequency of H. The sequence
(𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻)
has the relative frequency
ℎ

20
(𝐻) = 20

20 = 1,
the sequence
(𝑇 ; 𝑇 ; 𝐻; 𝐻; 𝐻; 𝑇 ; 𝐻; 𝑇 ; 𝑇 ; 𝑇 ; 𝐻; 𝐻; 𝑇 ; 𝐻; 𝐻; 𝐻; 𝐻; 𝑇 ; 𝑇 ; 𝐻)
has the relative frequency
ℎ

20
(𝐻) = 11

20 = 0.55,
and the sequence
(𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 ; 𝑇 )
has the relative frequency
ℎ

20
(𝐻) = 0

20 = 0.
Now we choose a value for 𝜖. According to the weak law of large numbers, this 𝜖
should be any number greater than 0. Let’s choose 0.1.
With 𝜖 = 0.1 and the relative frequency ℎ

20
(𝐻) for each outcome, we can now

define events — for example, the event that contains all outcomes whose relative
frequency of 𝐻 differs by more than 0.1 from the probability 𝑝(𝐻) = 0.5. Then,
for example, the outcomes
(𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻) and
(𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝑇 ; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝐻; 𝑇 ; 𝐻; 𝐻)
are elements of this event, while
(𝑇 ; 𝑇 ; 𝐻; 𝐻; 𝐻; 𝑇 ; 𝐻; 𝑇 ; 𝑇 ; 𝑇 ; 𝐻; 𝐻; 𝑇 ; 𝐻; 𝐻; 𝐻; 𝐻; 𝑇 ; 𝑇 ; 𝐻)
is not an element of this event, because the relative frequency ℎ

20
(𝐻) = 11

20 = 0.55
does not differ by more than 0.1 from 0.5.
We will denote this event as follows:

∣ℎ
20

(𝐻) − 0.5∣ > 0.1

Each outcome 𝑒
20

of the 20-fold coin toss — that is, each 20-sequence of H ’s and
T ’s — has the probability

𝑝(𝑒
20

) = 1
220 .
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Since all outcomes have the same probability, we can assign a probability to any
event by dividing the number of outcomes in that event by 220.
Thus, our event ∣ℎ

20
(𝐻) − 0.5∣ > 0.1 has a probability that we denote as

𝑃 (∣ℎ
20

(𝐻) − 0.5∣ > 0.1).
We can now form a sequence of probabilities by substituting 𝑛 = 21, 22, 23, ….
This sequence then has the terms
𝑃 (∣ℎ

21
(𝐻) − 0.5∣ > 0.1),

𝑃 (∣ℎ
22

(𝐻) − 0.5∣ > 0.1),
𝑃 (∣ℎ

23
(𝐻) − 0.5∣ > 0.1), etc.

If we were to calculate these probabilities, we would find that they become smaller
and smaller. In fact, we would find that these probabilities can get arbitrarily
close to 0 as long as we choose 𝑛 large enough. This simply means that the limit
of this sequence of probabilities is 0. We express this as

lim
𝑛→∞

𝑃 (|ℎ𝑛(𝐻) − 0.5| > 0.1) = 0.

Thus, we have what the weak law of large numbers states when 𝐸 is the event
that heads occur in a coin toss, 𝑝 = 0.5, and 𝜖 = 0.1.
In everyday language, this means that the probability that the relative frequency
of 𝐻 differs from the probability of 𝐻 — namely 0.5 — by more than 0.1 becomes
smaller and smaller and even approaches 0 if we repeat the coin toss often enough.
Since we can choose 𝜖 freely, we can also use 0.01 or 0.001 instead of 0.1. This
means: Even if we make the deviation of event 𝐻 from its probability very small,
the probability of such a deviation becomes smaller and smaller if we repeat the
random experiment often enough. Conversely, this means: As the number of coin
tosses increases, the probability that the relative frequency of heads is arbitrarily
close to 0.5 also becomes larger and even approaches 1 if we repeat the coin toss
infinitely many times.
By the way, the reasoning for convergence in probability of the relative frequency
when there are more than two possible outcomes of the underlying random exper-
iment lies in the multinomial distributions: the more evenly the numbers in the
denominator are distributed, the smaller the product of the factorials becomes.
Then the number of permutations becomes the largest. For example, if we have
the balls 1, 2, … , 6 in the box (that is, like rolling an ideal die), we compute
the probabilities of the different relative frequencies with respect to the counting
measure (counting density) using the multinomial distribution

𝑝(𝑛1; … ; 𝑛6) = ( 𝑛
𝑛1; … ; 𝑛6

) (1
6)

𝑛1
× … × (1

6)
𝑛6

where 𝑛 is the number of draws. Since 𝑛1 +…+𝑛6 = 𝑛, the different probabilities
arise only from the multinomial coefficients

( 𝑛
𝑛1; … ; 𝑛6

) = 𝑛!
𝑛1! × … × 𝑛6!
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For example, if we draw 60 times, the denominator of the multinomial coefficient
is smallest when 𝑛1 = … = 𝑛6 = 10.
But then the relative frequency, for example of “2,” is also equal to 1

6 .


